10.3. von Neumann stability analysis for the diffusion equation#
The one-dimensional diffusion equation is
(10.5)#\[\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2},\]
where \(D\) is the diffusivity.
The FTCS scheme applied to (10.5) is:
(10.6)#\[u_m^{n+1} = u_m^{n} + D\frac{\Delta t}{\Delta x^2}(u_{m+1}^n-2u_{m}^n+u_{m-1}^n)\]
Substituting a solution like (4.6) in (10.6), we have
\[\begin{split}B^{n+1}e^{ikm\Delta x}=B^ne^{ikm\Delta x}+ D\frac{\Delta t}{\Delta x^2}B^{n} e^{ik(m+1)\Delta x}\\
    -2B^{n} e^{ikm\Delta x}+B^{n} e^{ik(m-1)\Delta x}\end{split}\]
which, after some manipulation, allows to obtain the following expression for the amplification factor:
\[\frac{B^{n+1}}{B^n} = 1-2\tau+2\tau\cos k\Delta x = 1-4\tau \sin^2 \frac{k \Delta x}{2}, \quad \tau=D\frac{\Delta t}{\Delta x^2}.\]
The Von Neumann stability condition is:
(10.7)#\[\left|\frac{B^{n+1}}{B^n}\right|\leq 1 \Leftrightarrow \left|1-4\tau \sin^2 \frac{k \Delta x}{2}\right| \leq 1, \quad \text{for all } k.\]
For \(\tau > 0\), the worst case occurs when \(\sin^2 \frac{k \Delta x}{2}=1\), which leads to
\[
\tau \leq \frac{1}{2}. 
\]
Therefore, the FTCS scheme apllied to the linear diffusion equation (10.5) is conditionally stable, with the stability condition
(10.8)#\[D\frac{\Delta t}{\Delta x^2} \leq \frac{1}{2}.\]
