1.3. Absolute values#
The absolute value is denoted by vertical bars and indicate the positive number corresponding to the numeric value of an expression.
Let \(a\) be a positive number, \(a>0\)
Then we have:
(1.12)#\[\begin{split}\begin{aligned}
|a|=a\\
|-a|=a
\end{aligned}\end{split}\]
For inequalities, we have two notations that mean the same:
(1.13)#\[\begin{split}\begin{aligned}
|a|\leq1\\
-1\leq a\leq 1
\end{aligned}\end{split}\]
Inequalities of sums and differences:
(1.14)#\[\begin{split}\begin{aligned}
|a+b|&=\sqrt{a^2+b^2}\\
|a-b|&=\sqrt{a^2+(-b)^2}\\
\end{aligned}\end{split}\]
(1.15)#\[\left|\frac{a}{b}\right|=\frac{|a|}{|b|}\]
Combining the equations above gives the following:
(1.16)#\[\begin{split}\begin{aligned}
\left|\frac{a+b}{a-b}\right|&=\frac{|a+b|}{|a-b|}\\
&=\frac{\sqrt{a^2+b^2}}{\sqrt{a^2+(-b)^2}}\\
&=1
\end{aligned}\end{split}\]
The triangle inequality can be useful in some stabilty analyses:
(1.17)#\[|x+y|\leq|x|+|y|\]
