1.5. The Euler formula#
Eulers identity
(1.24)#\[e^{i\pi}+1=0\]
Eulers formula
(1.25)#\[e^{ix}=\cos x+i\sin x\]
**Cosine exponentialform
(1.26)#\[\frac{e^{ix}+e^{-ix}}{2}=\cos x\]
Sine exponential form
(1.27)#\[\frac{e^{ix}-e^{-ix}}{2i}=\sin x\]
Tangent exponential form
(1.28)#\[\frac{e^{ix}-e^{-ix}}{i(e^{ix}+e^{-1x})}=\tan x\]
Complex exponential
(1.29)#\[e^{x+iy}=e^x(\cos y+i\sin y)\]
de Moivre’s theorem
(1.30)#\[(\cos x+i\sin x)^n=\cos nx+i\sin nx\]
You can read more about this in Adams and Essex [AE18].
